Logarithmic uncertainty principle, convolution theorem related to continuous fractional wavelet transform and its properties on a generalized Sobolev space

نویسندگان

  • Mawardi Bahri
  • Ryuichi Ashino
چکیده

The continuous fractional wavelet transform (CFrWT) is a nontrivial generalization of the classical wavelet transform (WT) in the fractional Fourier transform (FrFT) domain. Firstly, the RiemannLebesgue lemma for the FrFT is derived, and secondly, the CFrWT in terms of the FrFT is introduced. Based on the CFrWT, a different proof of the inner product relation and the inversion formula of the CFrWT are provided. Thereafter, a logarithmic uncertainty relation for the CFrWT is investigated and the convolution theorem related to the CFrWT is established using the convolution of the FrFT. The CFrWT on a generalized Sobolev space is introduced and its important properties are presented..

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator

The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.

متن کامل

AN LP-LQ-VERSION OF MORGAN’S THEOREM FOR THE GENERALIZED BESSEL TRANSFORM

n this article, we prove An Lp-Lq-version of Morgan’s theorem for the generalized Bessel transform.

متن کامل

(Microsoft Word - spie2003.doc)

We show that a multi-dimensional scaling function of order γ (possibly fractional) can always be represented as the convolution of a polyharmonic B-spline of order γ and a distribution with a bounded Fourier transform which has neither order nor smoothness. The presence of the B-spline convolution factor explains all key wavelet properties: order of approximation, reproduction of polynomials, v...

متن کامل

Weighted Inequalities and Stein-weiss Potentials

Sharp extensions of Pitt’s inequality and bounds for Stein-Weiss fractional integrals are obtained that incorporate gradient forms and vector-valued operators. Such results include HardyRellich inequalities. Weighted inequalities provide quantitative information to characterize integrability for differential and integral operators and intrinsically are determined by their dilation character. In...

متن کامل

Wavelet Transformation

Wavelet transformation is one of the most practical mathematical transformations in the field of image processing, especially image and signal processing. Depending on the nature of the multiresolution analysis, Wavelet transformation become more accessible and powerful tools. In this paper, we refer to the mathematical foundations of this transformation.   Introduction: The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJWMIP

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2017